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Abstract

Biopersistence of carbon nanotubes, graphene oxide (GO) and several other types of carbonaceous 

nanomaterials is an essential determinant of their health effects. Successful biodegradation is one 

of the major factors defining the life span and biological responses to nanoparticles. Here, we 

review the role and contribution of different oxidative enzymes of inflammatory cells - 

myeloperoxidase, eosinophil peroxidase, lactoperoxidase, hemoglobin, and xanthine oxidase - to 

the reactions of nanoparticle biodegradation. We further focus on interactions of nanomaterials 
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with hemoproteins dependent on the specific features of their physico-chemical and structural 

characteristics. Mechanistically, we highlight the significance of immobilized peroxidase reactive 

intermediates vs diffusible small molecule oxidants (hypochlorous and hypobromous acids) for the 

overall oxidative biodegradation process in neutrophils and eosinophils. We also accentuate the 

importance of peroxynitrite-driven pathways realized in macrophages via the engagement of 

NADPH oxidase- and NO synthase-triggered oxidative mechanisms. We consider possible 

involvement of oxidative machinery of other professional phagocytes such as microglial cells, 

myeloid-derived suppressor cells, in the context of biodegradation relevant to targeted drug 

delivery. We evaluate the importance of genetic factors and their manipulations for the enzymatic 

biodegradation in vivo. Finally, we emphasize a novel type of biodegradation realized via the 

activation of the “dormant” peroxidase activity of hemoproteins by the nano-surface. This is 

exemplified by the binding of GO to cyt c causing the unfolding and “unmasking” of the 

peroxidase activity of the latter. We conclude with the strategies leading to safe by design 

carbonaceous nanoparticles with optimized characteristics for mechanism-based targeted delivery 

and regulatable life-span of drugs in circulation.
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Introduction

Advances in the development, production and applications of nanomaterials inevitably lead 

to numerous chemical and biochemical interactions at the interfaces of biological systems 

with nanoparticles that result in a variety of responses by the former as well as modifications 

of the latter. One can imagine that during the repetitive cycles of these interactions both the 

materials and the organisms are affected resulting in alterations that may change the 

consequences and the meaning of the interfacing partners. One of the first important 

modifications of the nanoparticles in biological systems is the formation of protein-lipid 

“corona” (Monopoli et al, 2012; Kapralov et al., 2012; Tenzer et al., 2013). The composition 

and properties of “corona” are dependent on the local microenvironments in biological 

fluids, tissues and cells, thus determining the specificity of nanoparticles-evoked reactions 

(Walkey et al., 2012; Sacchetti et al., 2013; Cai et al., 2013; Treuel et al., 2015). The 

physicochemical characteristics of the corona can also undergo marked changes due to 

metabolic conversions in the body and also via chemical reactions catalyzed by active 

ingredients of nanoparticles (Gao et al., 2014; Ma et al., 2015; Docter et al., 2015). This, in 

turn, triggers strongly modified biological responses (Dutta et al., 2007; Wang et al., 2013). 

Among the constituents of the protein corona, there may be enzymes contributing to the 

biodegradation process such as peroxidases, isoforms of CYP450, lysosomal hydrolases, etc.

Overall, nanoparticles tend to either be readily degradable or resistant to degradation in 

terms of their sensitivity to biodegradation. The first group includes nano-liposomes and 

polymeric nano-arrangements (such as dendrimers, micelles) (Kamaly et al., 2012; Xie et 

al., 2014; Chuan et al., 2015). Effective degradation of these nanomaterials is particularly 

important in the context of drug delivery aimed at the achievement of the prolonged 
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circulation of the nano-vehicle with the payload (Owens et al., 2006; Loos et al., 2014; 

Pérez-Herrero et al., 2015). The second group comprises carbon-based nanoparticles with 

sp2 hybridization of carbon atoms (i.e. carbon nanotubes, nanohorns and graphene family 

materials) (Kotchey et al., 2013a; Zhang et al., 2014a). These nanomaterials are more 

persistent and can either display prolonged life-time at the sites of their entry or migrate to 

distant locations (Liu et al., 2008; Yang et al., 2008; Shvedova et al., 2012a, 2014). The 

mechanisms underlying the resistance of the latter type of nanoparticles to biodegradation 

are important not only for their biomedical applications but also in regards to unintended 

exposures in occupational and environmental settings.

While studies of nanoparticles degradation have been conducted essentially from the time of 

their discovery and initial applications (mostly in the field of anticancer therapy (McDevitt 

et al., 2007; Liu et al., 2009; Burke et al., 2009; Liang and Chen, 2010)), the discovery of in 

vivo biodegradation of carbonaceous nanomaterials by enzymatic machinery of 

inflammatory cells (Kagan et al., 2010; Shvedova et al., 2012a) and enhancement of the 

enzymatic degradation of carbon nanotubes by surface modification caused a new wave of 

interest to this issue (Ali-Boucetta and Kostarelos, 2013; Orecchioni et al., 2014; 

Sureshbabu et al., 2015). This was mostly driven by exploration of new approaches to 

regulate the life-time of nanoparticles in desirable ways: increasing the circulation time of 

drug nano-carriers and enhancing the biodegradation process of nanomaterials causing 

inflammatory responses and toxicity after inadvertent exposures (Liu et al., 2010; Sacchetti 

et al., 2013; Shvedova et al., 2012b). Notably, a variety of microbial biodegradation 

enzymatic mechanisms have been described with the emphasis on their potential role in 

biodegradation of environmental nanoparticles (Zhang et al., 2013).

Enzymatic oxidative degradation of carbonaceous nanoparticles

The chemical oxidative degradation of pristine carbonaceous materials using strong acids 

and oxidants (such as mixtures of sulfuric acid and hydrogen peroxide, different chemical 

generators of hydroxyl radicals) has been known for quite some time (Liu et al., 1998; 

Zhang et al., 2003; Allen et al., 2009). However, the biological relevance of these oxidative 

processes remained elusive in spite of the fact that the catabolic pathways for oxidative 

degradation of different organic molecules in the body (e.g., by different P450 isoforms) 

have been well characterized (Hrycay and Bandiera, 2015; Olsen et al., 2015). One of the 

first indications that biologically relevant peroxidase reactions may be responsible for 

degradation of nanomaterials came from experiments with single-walled carbon nanotubes 

(SWCNTs) by a plant enzyme, horseradish peroxidase (HRP) (Allen et al., 2008). 

Subsequent detailed studies of the mechanisms and the reaction products (Allen et al., 2009; 

Zhao et al., 2011) demonstrated that other bio-peroxidases, particularly those present in 

inflammatory cells, can also effectively oxidatively “metabolize” carbonaceous 

nanomaterials (Kagan et al., 2010; Kotchey et al., 2012). Indeed, a number of different 

oxidative enzymes have been tested and found effective as a mechanism of nanoparticle 

biodegradation (Kotchey et al., 2013a). The list of enzymes includes myeloperoxidase 

(MPO), eosinophil peroxidase (EPO), lactoperoxidase, hemoglobin and xanthine oxidase 

(Table 1). Contrary to HRP, another plant metallo-enzyme Mn peroxidase, was shown to 

degrade pristine but not carboxylated SWCNTs (Zhang et al., 2014b). These studies also 
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established that two types of reactive intermediates – those formed within the protein 

(particularly oxo-ferryl iron (Fe4+=O) of heme-peroxidases (Compound I)) as well as freely 

diffusable low molecular weight oxidants such as hypochlorous and hypobromous acids 

(HOCl and HOBr) – can be responsible for the oxidative modification of carbonaceous 

nanomaterials, (Table 2) (Sutherland et al., 1993; Kagan et al., 2010; Vlasova et al., 2011). 

The relative contribution of these two types of oxidants to the overall degradation process 

may vary dependently on the type of enzyme, conditions (particularly pH), pro-/anti-

inflammatory status, etc (Kotchey et al., 2013b; Vlasova et al., 2012). In all cases, however, 

the presence of catalytic metals is necessary for triggering the degradation process.

Numerous studies emphasized the effects of diversified organic compounds, particularly 

hydrophobic molecules, with the expression of different isoforms of CYP450 and their 

activity (reviewed in Zanger and Schwab, 2013; Hrycay and Bandiera, 2015). Moreover, 

particular carbonaceous materials can also cause robust changes in the functions of CYP450 

system (Ji et al., 2009; Fröhlich et al., 2010; Che Abdullah et al, 2014; etc.). This catalytic 

responsiveness of CYP450 has lead to the development and applications of carbonaceous 

nanoparticles complexes with these hemoproteins as CNT-conjugated P450-biosensors 

(Pauwels et al., 2010; Carrara et al., 2011; Baj-Rossi et al., 2012).

Surprisingly, to the best of our knowledge there have been no studies demonstrating the 

propensity of CYP450 to biodegrade nanoparticles. This may represent an interesting 

direction of research because highly reactive Compound I is generated during P450 

catalyzed metabolism of xenobiotics or direct interaction of these hemoproteins with H2O2 

or organic hydroperoxides (peroxidase shunt) (Table 1) (Krest et al., 2013; Shoji and 

Watanabe, 2014).

In contrast to highly likely and straightforward capacities of CYP450 to be involved in the 

degradation of carbonaceous nanoparticles, the potential role of catalase is less obvious. In 

contrast to widely opened and solvent exposed active sites, characteristic of most 

hemoprotein-based peroxidases, the heme of catalases is deeply buried into the protein 

structure and connected with the surface via a very long and narrow access channel 

(Vidossich et al., 2012). Catalase compound I is accessible only for very small molecules to 

effectively fulfill the function of oxoferryl iron to either oxidize H2O2 or one of the aromatic 

residues of the protein thus leading to the formation of tyrosyl of tryptophanyl radicals 

(Kirkman and Gaetani, 2007; Alfonso-Prieto et al., 2012). The peroxidase activity of native 

catalase is relatively low. It is possible, however, that catalase monomers formed upon 

dissociation of multi-meric protein and/or their structural re-arrangements on the surface of 

nano-materials that will lead to the heme exposure and appearance of peroxidase-like 

activity with a typical catalytic competence to oxidize phenolic compounds (Horozova et al., 

1998). Interestingly, this type of peroxidase activity of catalase has been explored in 

reactions of controllable degradation of C3N4 to obtain biocompartible fluorescent N-C dots 

(Liu et al., 2014).

Vlasova et al. Page 4

Toxicol Appl Pharmacol. Author manuscript; available in PMC 2017 May 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Pseudo-peroxidase degradation by adventitious transition metals present 

in nanomaterials

The production of carbonaceous nanomaterials is often associated with the employment of 

significant amounts of transition metal catalysts, including iron, copper, manganese, etc 

(Laurent et al., 1998; Panish et al., 2013). The presence of these metals should be inevitably 

associated with the pseudo-peroxidase function inherent to nano-materials. Moreover, 

electron donor-acceptor specificity of nano-environments may be conducive to the unusual 

peroxidase-like activities of metals not traditionally associated with redox catalysis such as 

gold, silver, etc (Garg et al., 2015; Tao et al., 2013). Indeed, many studies have documented 

the peroxidase-like activities of a variety of metal-containing nanoparticles inherent to their 

structure or present as adventitious metals (Gao et al., 2014; Kagan et al., 2006a). Intrinsic 

catalytic activity of graphene oxide (GO) may be associated with its paramagnetic properties 

(Song et al., 2010; Su et al., 2012; Garg et al., 2015). As an illustration, we present EPR 

spectra of GO samples demonstrating the presence of Mn(II) inclusions with paramagnetic 

propensities and narrow paramagnetic signal of GO structure (Fig. 1A). Notably, the Mn-

containing GO samples displayed peroxidase-like activity as revealed by their ability to 

oxidize typical peroxidase substrates Amplex Red and dichlorofluorescein (DCFH) (Fig. 

1B). This type of peroxidase activities associated with integrated or adventitious metals in 

nanoparticles can act as an important biodegradation factor. It may act as a self-propelled 

biodegradation mechanism, including one that may be intentionally built-in as a self-

biodegradation factor.

Awakening of dormant peroxidase activity during interactions of 

hemoproteins with nano-surfaces

Specific interactions of nanomaterials with hemoproteins that can trigger the conversion of 

hexa- to penta-coordinated states of the heme iron in “dormant” peroxidases are of particular 

interest in the context of biodegradation (Kagan et al., 2004; Kapralov 2007). As a typical 

example, one can consider interactions of cytochrome c (cyt c), the hexa-coordinated 

hemoprotein in the intermembrane space of mitochondria, with GO. The negative charges 

on GO’s surface favor binding to basic proteins such as cyt c that has eight positive charges 

on its surface (Fig. 2) (Koppenol et al., 1982; Yang et al., 2013). Extensive previous work 

established a very peculiar behavior of cyt c upon its interactions with negatively charged 

phospholipids, particularly, cardiolipin, a unique doubly-charged phospholipid of 

mitochondria (Kagan et al. 2005; Kapralov et al., 2011). During this interaction, the protein 

undergoes structural rearrangements leading to its conversion from the hexa-coordinated to 

the penta-coordinated electron configuration resulting in “unmasking” of its peroxidase 

activity (Vlasova et al., 2006). This phenomenon has been extensively studied in 

mitochondria, cells, and tissues and its role in the execution of apoptotic cell death program 

and consequences for tissue damage have been well established (Kagan et al., 2006b; 

Hüttemann et al., 2011). Notably, these specific interactions of hemoproteins with nano-

surfaces are meaningful in the context of degradation of nanomaterials. The schema of these 

interactions and several sets of experimental data illustrate the pathways and significance of 

GO binding of cyt c resulting in unfolding of the protein, weakening of the heme iron/Met80 
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sulfur bond and low to high spin transition leading to peroxidase activation (Fig.3). The 

respective transitions of cyt c can be characterized by spectral changes (Figs. 4A, 4B) (Jiang 

et al., 2014). Accordingly, cyt c displays significant peroxidase activity upon its binding to 

the GO surface (Fig. 5) (Yang et al., 2013; Hua et al., 2012). Most importantly, the 

peroxidase reactive intermediates of cyt c can directly oxidize GO causing its degradation 

detectable by visible-NIR spectroscopy, TEM and XPS (Fig. 6 and Table 3). Thus, by 

unfolding and activating cyt c into a peroxidase, GO inflicts self-degradation. It is likely that 

cyt c/GO interactions represent a prototypical example of a very interesting new type of 

biodegradation reactions triggered by interactions of different hemoproteins with charged 

nano-surfaces. This new type of biodegradation reaction may lead to the design and 

development of new generations of nano-platforms for drug delivery as well as for 

modulating the physicochemical characteristics of nanomaterials. Indeed, oxidative 

modifications of GO have been associated with the changes of its conducting-

semiconducting characteristics (Kotchey et al., 2011). In this regard, the entire family of 

globins, particularly a recently discovered cytoglobin (Kawada et al., 2001; Beckerson et al., 

2015), can represent a promising instrument for the controlled and targeted modification/

degrade action of carbonaceous nanomaterials (Ascenzi et al., 2013).

Alternatives (non-peroxidase) to enzymatic oxidative degradation of 

nanomaterials

In addition to peroxidase-based mechanisms, other oxidative metabolic reactions may 

contribute to the biodegradation process. Among the physiologically relevant mechanisms, 

peroxynitrite generating reactions have been identified as potent mechanisms of nanoparticle 

biodegradation (Kagan et al., 2014). Oxidative biodegradation of SWCNTs via 

superoxide/NO• → peroxynitrite-driven pathways of activated macrophages facilitate 

clearance of nanoparticles from the lung. This particular pathway includes two enzymatic 

components producing NO• and superoxide radicals, respectively – iNOS and NADPH 

oxidase. Interestingly, another generator of superoxide radicals, xanthine oxidase, can also 

contribute to degradation of oxidized multi-walled carbon nanotubes (ox-MWCNTs) (Table 

1) (Sureshbabu et al., 2015).

Oxidative degradation of nanoparticles by inflammatory cells

Among many encounters with the gateway cells of the body, interactions of nanoparticles 

with immune/inflammatory cells are of particular interest for at least two reasons. 

Inflammatory cells are “armed” with different types of generators of reactive oxygen and 

nitrogen species (ROS and RNS, respectively) as well as hypochlorous acid. These chemical 

agents have strong oxidizing redox potentials enabling their reactivity towards the 

carbonaceous surface of nanoparticles (Sutherland et al., 1993; Davies et al., 2008) (Table 

2). Notably, oxygenation (along with nitration, chlorination) of the lipid-protein “corona” of 

nanoparticles generates clusters of hydrophilic and/or negatively charged functionalities 

recognizable by inflammatory cell receptors, thus triggering a vicious cycle of interactions 

leading to a severe inflammatory response (Konduru et al., 2009; Shvedova et al., 2005, 

2012b). In professional phagocytes, the major events include engulfment, uptake, possible 

intracellular metabolism, and digestion (Nauseef, 2007; Dale et al., 2008; Elgrabli et al., 
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2008). Two major factors – enzymatic machinery generating reactive intermediates and a 

source of oxidizing equivalents (e.g., H2O2, lipid hydroperoxides) – are required for the 

effective degradation of carbonaceous nanomaterials. While oxidative enzymes are always 

constitutively expressed in certain types of immune cells, the levels of their expression may 

be increased many-fold by pro-inflammatory conditions (Brüne et al, 2013; Mangge et al., 

2014), including those triggered by the nanoparticles (Lee et al., 2012; Bussy et al., 2012).

Neutrophils are the first line of responders to pro-inflammatory stimulation and their 

`response reaction includes the activation of MPO-driven pathways. In the context of 

biodegradation, two mechanisms – immobilized reactive intermediates of the protein itself 

and highly diffusible small molecule oxidants such as hypochlorous acid HOCl – have been 

identified as components of the oxidative process (Nauseef et al., 2007, Arnhold and 

Flemmig, 2010). The role and contribution of these two factors into the overall degradation 

may depend on the specific conditions (e.g., the presence of sufficient amounts of Cl− ions) 

in the microenvironment. In vitro, activation of neutrophils (by fMLP and cytochalasin B or 

by serum opsonized zymosan) is required to achieve significant levels of oxidative 

biodegradation (Kagan et al., 2010; Lu et al., 2014). Normally occurring opsonization of 

particles in the body –stimulating their uptake by phagocytes - can be mimicked by their 

functionalization with immunoglobulins to facilitate the particles’ uptake by neutrophils. 

Under these conditions, neutrophils respond by oxidative burst detectable by the generation 

of superoxide anion radicals which dismutate to yield H2O2. The latter is required to feed 

the peroxidase reaction of MPO, thus causing oxidative biodegradation of nanoparticles. The 

efficiency of this pathway has been documented for SWCNTs (including their PEGylated 

forms) and GO (Kagan et al., 2010; Bhattacharya et al., 2014; Kurapati et al., 2015). Not 

only active MPO but also sufficiently high activity of NADPH oxidase – generating 

superoxide radicals - is necessary to maintain the degradation process. The essentiality of 

this function of NADPH oxidase has been demonstrated both pharmacologically (using its 

inhibitors) as well as genetically (using NADPH oxidase deficient animals (Shvedova et al., 

2008; Kagan et al., 2014)).

Eosinophils another class of immune cells - combat multicellular parasitic organisms 

engaging a specialized peroxidase, EPO, capable of generating hypobromous acid (HOBr) 

and low levels of hypochlorous acid at acidic pH (Davies 2008). In murine eosinophils 

activated by cytochalasin B plus platelet-activating factor (PAF), the oxidizing enzyme, 

EPO, is released to cause extracellular degradation of SWCNTs (Andón et al., 2013).

Macrophages employ the complex of reactions leading to the production of peroxynitrite, 

another potent oxidant capable of oxidative degradation of carbonaceous nanomaterials. 

Two enzymatic systems - NADPH oxidase and NO synthase - produce superoxide radicals 

and NO•, respectively. Both of these molecules are not reactive enough to oxidatively 

biodegrade nanoparticles. However, O2
−• and NO• can effectively react to yield 

peroxynitrite, whose oxidizing potency is sufficient to cause biodegradation (Ischiropoulos 

et al., 1992). In vitro, effective biodegradation capacity has been demonstrated for several 

types of macrophages such as RAW 264.7, THP-1, and human monocyte-derived 

macrophages (Kagan et al., 2014; Elgrabli et al., 2008, 2015; Zhang et al., 2015) (Table 1). 

Because peroxynitrite-dependent oxidation reactions are independent of the direct binding of 
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the reactive protein intermediates with nanoparticles, the degradation process driven by 

macrophages is independent on the specific positioning of the oxidative machinery on the 

surface of nanoparticles. As a result, different types of nanomaterials – oxidatively pre-

modified as well as pristine - may undergo degradation by macrophages. It is also possible 

that macrophages “prime” the nano-objects to generate “oxidized” sites where released 

enzymes of neutrophils and eosinophils can selectively “land” to propagate the process 

initiated by macrophages.

It is possible that other types of immune cells – specific to particular organs and/or disease 

conditions – may be involved in biodegradation of carbonaceous nanomaterials. For 

example, microglial cells in the brain can act similar to macrophages and catalyze the 

reactions leading to peroxynitrite and ROS formation, hence effectively biodegrading 

nanoparticles (Goode et al., 2015; Bussy et al., 2016). The evidence for the occurrence and 

effectiveness of this pathway in the brain is accumulating (Nunes et al., 2012). Another 

example is myeloid-derived suppressor cells (MDSC) – a heterogenous population of 

immature cells from the myeloid lineage. As a result of an altered hematopoiesis, amounts 

of MDSCs can be highly increased in severe disease conditions, particularly chronic 

infections and cancer (Gabrilovich et al., 2012). These pathological conditions lead to over-

expression of NADPH oxidase, iNOS and MPO in MDSC creating a highly pro-oxidant 

intracellular environment (Youn et al., 2012). These specific features of MDSC may be 

exploited for the targeted degradation of nanomaterials for optimized delivery of drugs 

(Zhao et al., 2015). MDSC-derived oxidants can open carbon nano-cups (NCNCs) loaded 

with antitumor drug paclitaxel and corked with gold nanoparticles (GNPs) and release 

paclitaxel (Figs. 7, 8).

Biodegradation of nanomaterials by inflammatory cells in vivo : role in 

pulmonary inflammation and fibrosis

There is a common opinion about biopersistence of nanoparticles in the body. While 

extended circulation of drug nano-carriers with payloads may be desirable, the ineffective 

elimination of nanoparticles from the organs after unintentional exposure or as a result of 

therapeutic attempts seems to represent a serious problem. Poorly degradable nanomaterials 

can accumulate in organs and inside cells where they can cause detrimental effects (Fig. 9). 

Even with regards to carbonaceous nanomaterials that are readily susceptible to 

biodegradation, carbon nanotubes may remain inside macrophages in the spleen and liver for 

prolonged periods of time following parenteral administration (Yang et al., 2008, Clichici et 

al., 2014; Albini et al., 2015). Moreover, SWCNTs have been observed in the lungs of 

exposed mice up to one year after pharyngeal administration (Shvedova et al., 2014). 

Overall, however, high-aspect, bulky carbonaceous nanomaterials tend to have longer 

retention times within the tissues and are less effectively cleared than short functionalized 

particles that are readily taken up and degraded by phagocytes (Mercer et al., 2008; Murphy 

et al., 2011, Bussy et al., 2012). Notoriously, the appearance of nanoparticles in tissues 

triggers robust inflammatory responses. Given that immune cells can spend some of their 

pro-oxidant potential on biodegradation of the nanoparticles, and thus display a weakened 

immune response, studies of nanoparticle biodegradation in vivo and possible regulation of 
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biodegradation in the context of inflammation in vivo became necessary (Shvedova et al., 

2007; Kotchey et al., 2013b; Dumortier et al., 2013). These issues have also stimulated the 

concepts of creating safe-by-design nanoparticles as well as employment of inflammatory 

cells for targeted drug delivery (Sureshbabu et al., 2015; Zhao et al., 2015).

In line with the ability to take up and biodegrade carbonaceous nanomaterials, professional 

phagocytes are believed to be mostly accountable for the clearance of the engulfed 

nanoparticles in vivo. Several studies established the association between the clearance of 

carbonaceous nanoparticles in the lungs and the amounts of neutrophils and macrophages in 

the respective tissues (Shvedova et al., 2005, 2012a). These correlational relationships imply 

that, indeed, biodegradation reactions taking place in inflammatory cells are substantial 

contributors to the overall elimination of nanoparticles from the tissues. In support of this 

conclusion, the data on the time course of inflammatory responses and SWCNTs elimination 

in mice with k/o MPO clearly demonstrated the dependence of these biomarkers on the 

genetic manipulations with the major biodegrading oxidative enzyme of neutrophils, MPO. 

Quantitative imaging clearly demonstrated the link between MPO-catalyzed degradation of 

nanoparticles and one of the hallmarks of the inflammation – pulmonary fibrosis – in wild 

type (WT) versus MPO k/o animals (Shvedova et al., 2012a). The role of NADPH oxidase 

as a supplier of superoxide for the subsequent reactions of dismutation (to generate H2O2 as 

a fuel for MPO) or with NO• (to produce peroxynitrite in macrophages) has been revealed in 

experiments with genetically manipulated animals. Clearance of SWCNTs was 10-fold less 

effective in NADPH oxidase-deficient mice (gp91phox(−/−) mice) vs WT animals. 

Photoacoustic imaging also documented significantly reduced rate of SWCNTs clearance in 

the lung of NADPH-deficient mice compared to WT control animals (Kagan et al., 2014). 

There are clear experimental indications that microglial cells - with their highly developed 

oxidative enzymatic machinery similar to that in macrophages – are primarily responsible 

for the biodegradative elimination of MWCNTs from the brain (Nunes et al., 2012; Bardi et 

al., 2013; Bussy et al., 2016).

Employment of enzymatic biodegradation of nano-containers for targeting 

inflammatory cells in cancer. Peroxidase degradation of payloads vs nano-

containers – significance for drug delivery

Design and development of nano-platform based carriers for drug delivery represents one of 

the active fields for biomedical applications (Battigelli et al., 2013). In this context, effective 

timely degradation of drug carriers becomes particularly important but must be optimized 

with regards to nano-carrier vs drug payload degradation (Farokhzad et al., 2006). It has 

been well documented that oxidative enzymes of inflammatory cells, particularly MPO, can 

catalytically destroy different types of small organic molecules, including drugs, in 

circulation (Davies 2008). This wasteful drug metabolism may be exceptionally strong in 

pro-inflammatory conditions associated with increased amounts and activation of 

inflammatory cells. This raises the question of possible “protective” role of nano-carriers in 

preventing unnecessary degradation of payloads and preservation of their therapeutic 

potential. Notably, experimental assessments of nano-carrier vs drug degradation have not 

been adequately addressed. A recent study compared degradation of an antitumor drug, 
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doxorubicin (DOX), in free form vs its conjugate with SWCNTs in the presence of MPO or 

ONOO-generating systems (Seo et al., 2015). The evaluations in simple biochemical 

enzymatic systems clearly demonstrated that the SWCNTs-associated drug molecules 

(DOX-SWCNTs) degraded more slowly than free DOX. Notably, cytostatic and cytotoxic 

effects of free DOX, but not nanotube-carried drug, on melanoma and lung carcinoma cell 

lines were abolished in the presence of tumor-activated MDSC known to express high levels 

of MPO, NADPH oxidase and iNOS thus providing enhanced myeloperoxidase- and 

peroxynitrite-induced conditions for biodegradation of organic molecules. Optimizing the 

balance between the degradation and resistance of the drug carrier and the payload towards 

the oxidants generated by inflammatory cells is critical to meet the needs for safety and 

prolonged circulation while orchestrating the stability and therapeutic effect of the drug. 

This strategy opens opportunities for exploring new parameters in biodegradation and 

developing controllable degradation properties by chemical modification of the surface of 

nanotubes. Further studies are necessary to elucidate important details relevant to the 

degradation characteristics of different drug nano-delivery systems in the context of 

achieving their optimized therapeutic potential.

Concluding remarks

The currently accelerating progress in nanotechnologies has already accepted the “safe-by-

design” principle as a necessary requisite in the development of new nanomaterials. This 

principle has to include the “safe-by-biodegradation” component, providing for the 

optimized life-time and clearance of nanoparticles from the body. In this context, the broad 

applications of nitrogen-doped carbon nanomaterials offer a very important advantage in 

creating defects in the structure that can serve as “biodegradation” initiation centers. The 

introduction of principally new nanomaterials with unexpected features of their interactions 

with the intracellular mechanisms of genetic, epigenetic, and metabolomics regulation calls 

for new approaches to assessments of their toxic mechanisms. For example, a recently 

introduced spherical nucleic acids (Service, 2015) – nano-DNA arrays that can readily enter 

the cells, “seeks and binds” very low quantities of complementary DNA and RNA from 

pathogenic bacteria and viruses in the blood. As this affects the expression of selected genes, 

the resourcefulness in evaluating potential side effects, toxicity, and clearance become 

particularly important. New generations of nano-platforms are designed and used not only as 

effective delivery vehicles but also for the engagement of their unique nano-characteristics 

in manipulations of cell metabolism, cell-cell communications, and pathogen-host 

interactions. Oxidative modifications of these innovative materials by immune cells may 

result in the emergence of unforeseen propensities and, consequently, unexpected effects on 

cell functions. Exploration and utilization of targeted, enzymatically-catalyzed, oxidative 

modification/biodegradation of these new nanomaterials represent an exciting future area of 

research.
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Highlights

Nanoparticles can be degraded by oxidative enzymatic machinery of inflammatory cells.

Peroxidase-generated oxidants are the reactive species executing the biodegradation.

Unmasked by GO binding peroxidase activity of cyt biodegrades GO.

Professional phagocytes are accountable for the clearance of nanoparticles in vivo.

Carbonaceous nano-carriers of drugs protect against degradation of payloads.
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Fig. 1. Paramagnetic properties of GO are accountable for its peroxidase-like activity
A) – EPR spectrum of GO measured at 77K is a composition of a narrow EPR spectrum at 

g~2.0 which is due to intrinsic paramagnetic properties of GO and hexa-component EPR 

spectrum of manganese embedded into carbon structure.

B) – GO can oxidize peroxidase substrates characterized by low reduction potentials: 

Amplex red, dichlorofluorescein (DCFH), and ascorbate (n=3). H2O2 (100 µM) was added 

to the solutions of substrates (50 µM) and GO (0.1 mg/ml) and formation of fluorescent 

products was detected at 30 or 60 min. In the absence of GO fluorescence responses from 

Amplex red or DCFH were lower than 10 A.U. EPR signal of ascorbate (1 mM) could be 

measured in the absence of H2O2 but not in the absence of GO (0.5 mg/ml).
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Fig. 2. 
AFM evidence for cyt c binding with GO. 5 µM cyt c were added to a suspension of GO (0.2 

mg/ml) in 20 mM Na-phosphate buffer, pH 7.4 and tapping mode AFM height analysis was 

performed. Average GO height is 1.5 nm, and height of cyt c ranges from 3.3 to 3.7 nm.
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Fig. 3. 
Cyt c binding and peroxidase activation upon interaction with GO. Eight positive charges on 

the surface of cyt c (Lys+) can electrostatically interact with the negatively charged oxygen-

containing functional groups of GO. This interaction of cyt c with GO leads to protein 

unfolding associated with the “awakening” of dormant peroxidase activity. This peroxidase 

activation of cyt c can trigger – in the presence of oxidizing equivalents (H2O2, organic 

hydroperoxides) -oxidative modification/degradation of GO.
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Fig. 4. Absorption spectra of cyt c illustrating GO-induced formation of high-spin form of heme-
iron and weakening of the heme iron/Met80 sulfur bond
A) - Effect of GO on the formation of high-spin iron state of the hemoprotein. a) - Optical 

absorption spectra of cyt c in the absence (solid line) and in the presence (dashed line) of 

GO; b) - differential absorption spectrum (obtained by subtracting spectrum of cyt c from 

spectrum of cyt c incubated with GO) shows positive features at 480–495 and 610–625 nm 

accompanied by a clear trough at 700 nm indicative of high-spin ferric heme; c) Effect of 

GO on the height of a peak at 480 nm (75 µM cyt c, n=3).

B) - Dependence of the absorbance of the Fe-S(Met80) bond (λ 695 nm) on GO/cyt c ratio. 

Characteristic absorbance band at 695 nm is associated with an axial coordination of the 

heme iron by the sulfur atom of Met80 in cyt c active site. In the presence of GO, loss of 

absorbance band at 695 nm was observed indicating the disruption or weakening of the Fe-

S(Met80) coordination. Insert - optical absorption spectrum of cyt c at region around 695 nm 

before and after subtracting of baseline. The absorbance was measured in 20 mM HEPES 

buffer containing 100 µM DTPA (pH 7.4) using 50 µM of cyt c, n=7-9.
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Fig. 5. Binding of GO to cyt c causes unfolding of the protein and increases the accessibility of 
cyt c active site
A) - GO facilitates cyt c nitrosylation as evidenced by low temperature EPR spectroscopy. 

Magnitude of the signal of nitrosylated cyt c depends on GO/cyt c ratio revealing the 

increase of the accessibility of cyt c active site towards nitric oxide upon enzyme binding to 

GO (Vlasova et al., 2006). Inserts are EPR spectra of cyt c nitrosylated in the absence (blue) 

and in the presence (red) of GO. EPR spectrum of nitrosylated cyt c/GO complexes includes 

pronounced narrow GO spectrum at g~2. Reduced cyt c (100 µM, 500 µM ascorbate) was 

incubated with GO at 37°C for 5 min in 50 mM sodium phosphate buffer, pH 7.4, 

containing 100 µM DTPA, then 750 µM PAPANONOate was added and incubation was 

continued for additional 15 min. The reaction was stopped by freezing the samples in liquid 

nitrogen. EPR spectra of nitrosylated cyt c were measured at 77K.

Binding to GO confers peroxidase activity on cyt c: B) - Magnitude of EPR spectrum of 

etoposide-phenoxyl radicals (insert) generated in the peroxidase reaction of cyt c/GO 
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complexes in 2 min after addition of 100 µM H2O2 (7.5 µM cyt c) (Kagan et al., 1999); C) - 

Oxidation of peroxidase substrate ABTS by cyt c/GO. Oxidation of ABTS to yield the 

product with absorbance maximum at 410 nm was performed at reagent concentrations: 5 

µM cyt c, 1 mM ABTS and 100 µM H2O2. The effect of GO on cyt c peroxidase activity is 

compared to the effects of TOCL (blue bar) and ox-SWCNTs.
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Fig. 6. 
Activation of cyt c into peroxidase caused biodegradation of GO. GO (100 µg/ml) was 

suspended in 50 mM Na-phosphate buffer, containing 100 µM DTPA, pH 7.4. Cyt c (2.5 

µM) was added once a day and micro aliquotes of H2O2 (50 µM after each addition) were 

added 5 times a day during 5 days. a) - Visual evidence of GO degradation as a result of 

treatment with cyt c and H2O2 (sample 2). Pictures of GO samples were taken in 6 days of 

incubation; b) -optical absorbance of the sonicated samples at 1100 nm. For each sample, 

data are averaged for three independent suspensions, * p<0.05 versus control. c) - TEM 

images of untreated GO (control), GO incubated with H2O2, and GO treated with cyt c and 

H2O2.
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Fig. 7. 
Transmission electron microscopy (TEM) images of nitrogen-doped carbon nanotube cups 

(NCNCs). A) NCNCs synthesized from chemical vapor deposition; B) NCNCs after 

separation through probe-tip sonication; C) separated NCNCs loaded with paclitaxel and 

corked with gold nanoparticles (GNPs) through citrate reduction of chloroauric acid; D) 

GNP corked NCNCs after incubation with myeloid-derived suppressor cells (MDSC), 

removal of the GNP cork and degradation of nanotube sidewalls is demonstrated in addition 

to release of loaded cargo. All scale bars are 100 nm.
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Fig. 8. 
Nitrogen-doped carbon nanotube cups (NCNC) loaded with paclitaxel (Pac) block TGF-β 

production by tumor-associated MDSC. Bone marrow MDSC were sorted from tumor-free 

and B16-bearing mice (3 weeks), incubated with medium (Control), empty NCNC and 

NCNC/Pac. TGF-β was measured by ELISA. *, p<0.05 (vs controls in tumor-free mice; **, 

p<0.05 (vs NCNC Pac).
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Fig. 9. 
Hyperspectral images (CytoViva) of the lung tissue of mice at day 7 after pharyngeal 

aspiration of SWCNTs. The scanned images a) were collected at 40 × employing an 

Olympus BX-51 microscope and a 100 W quartz-halogen light source. The pixels that match 

the SWCNTs spectral profiles were mapped in red b). Spectral data c) was captured with the 

CytoViva spectrophotometer utilizing an integrated CCD camera.
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Table 1

Enzymatic degradation of carbonaceous nanomaterials with sp2 hybridization by in vivo relevant oxidative 

systems.

Biological system Oxidative equivalents Carbonaceous
nanomaterials

References

Enzymes + H2O2

Myeloperoxidase
(MPO)

Compound I,
Compound II,

c-SWCNTs
PEG-SWCNTs

Kagan et al., 2010;
Vlasova et al., 2012;

HOCl, HOBr PEG-SWCNTs Bhattacharya et al.,
2014

Nitrogen-doped CNT
cups Zhao et al., 2014

Graphene oxide Kurapati et al., 2015

Carbon nanohorns Zhang et al., 2015

Eosinophil peroxidase
(EPO)

Compound I,
Compound II, c-SWCNTs Andón et al., 2013

HOBr; (low HOCl)

Lactoperoxidase
(LPO) Compound I, c-SWCNTs, PEG-SWCNTs

ox-SWCNTs and Vlasova et al., 2011, 2012

HOBr, HOSCN ox-SWCNTs+lung
surfactant Bhattacharya et al., 2015

Xanthine oxidase + NO

(without H2O2) ONOO c-SWCNTs Kagan et al., 2014

Xanthine oxidase ox-MWCNTs, f-MWCNTs

Hemoglobin O2•− + H2O2 → HO• Sureshbabu et al., 2015

Tyr-O•, HOO•, HO• c-SWCNTs, PEG-SWCNTs

Cytochrome c Tyr-O•, HO• Graphene oxide Vlasova et al., 2011, 2012

Phagolysosomal simulant
fluid + H2O2

n.d. ox-SWCNTs, ox-
MWCNTs

the present paper
Russier et al., 2010

Murine bronchoalveolar
lavage fluid + H2O2 +
NaSCN

LPO, MPO, HOSCN ox-SWCNTs Bhattacharya et. al., 2015

Neutrophil extracellular
traps + H2O2 + NaBr MPO, HOCl, HOBr ox-SWCNTs Farrera et al., 2014

Human neutrophils
+ fMLP and cytochalasin B
+ fMLP and cytochalasin B
+ serum opsonized
zymosan

MPO, HOCl
c-SWCNTs+IgG
PEG-SWCNTs
HSA-SWCNTs

Kagan et al., 2010;

Bhattacharya et al., 2014

Macrophages: ROS, ONOO- Lu et al., 2014

Human monocyte-derived c-SWCNTs+IgG

THP-1 c-SWCNTs

THP-1 MWCNTs-NH2 Kagan et al., 2010

RAW 264.7, THP-1 Carbon nanohorns Kagan et al., 2014

Elgrabli et al., 2015

Murine eosnophils
+ cytochalasin B and PAF EPO, HOBr ox-SWCNTs Zhang et al., 2015

Toxicol Appl Pharmacol. Author manuscript; available in PMC 2017 May 15.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Vlasova et al. Page 31

Biological system Oxidative equivalents Carbonaceous
nanomaterials

References

Myeloid-derived
suppressor cells MPO, HOCl Nitrogen-doped CNT

cups Andón et al., 2013

Primary microglia n.d. (ROS, RNS) ox-MWCNTs, MWCNT- Zhao et al., 2014

Experimental animals NH2,

-Pharyngeal aspiration ox-MWCNT-NH2 Bussy et al., 2016

w/t and MPO k/o mice
-Pharyngeal aspiration MPO, HOCl c-SWCNTs

w/t and NADPH-oxidase-
deficient mice ONOO- c-SWCNTs Shvedova et al, 2012

-Stereotactic
administration Kagan et al, 2014

C57BL/6 mice (ROS) MWCNT-NH3
+

Nunes et al., 2012

ROS – reactive oxygen species; RNS – reactive nitrogen species; n.d. – not determined.
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Table 2

Standard reduction potentials for redox couples of oxidants which are capable to oxidize and degrade 

carbonaceous nanomaterials in vivo (E° > 0.5 V). pH 6.5-7.0, 25°C.

Redox couple Reduction
potentials
(E°, V)

Reference

Myeloperoxidase:

Compound I/compound II 1.35 Furtmuller et al., 2003

Compound II/ferric enzyme 0.97 Furtmuller et al., 2003

Eosinophyl peroxidase n.d.

Lactoperoxidase:

Compound I/compound II 1.14 Furtmuller et al., 2005

Compound II/ferric enzyme 1.04 Furtmuller et al., 2005

Cytochrome P450

Compound I/Compound II 1.35 Koppenol, 2007

HO•, H+/H2O 2.31 Buettner, 1993

RO•, H+/ROH 1.60 Buettner, 1993

HOO•, H+/H2O2 1.06 Buettner, 1993

ROO•, H+/H2O2 1.00 Buettner, 1993

Trp•, H+/Trp 1.05 DeFillipis et al., 1989

Tyr-O•, H+/Tyr-OH 0.94 DeFillipis et al., 1989

ONOOH, H+ /•NO2, H2O 1.40 Koppenol et al., 1992

ONOOH, H+ /NO2
−, H2O 1.20 Koppenol et al., 1992

HOCl, H+/Cl−, H2O 1.48 Vanýsek, 2011

HOBr, H+/Br−, H2O 1.33 Vanýsek, 2011

HOSCN, H+/SCN−, H2O 0.56 Arnhold et al., 2006

E° = 0.5V – reduction potential of the valence band for SWCNTs (Gratzel, 2001; Choi et al., 2002).
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Table 3

X-Ray Photoelectron Spectroscopy (XPS) characterization of GO samples. Carbon/oxygen content (calculated 

from survey spectra) and relative concentrations of functional groups (calculated from hi-res C1s spectra) in 

graphene oxide samples

Control + H2O2 + cyt c
+ H2O2

C:O 1.72 2.34 1.52

C−O (%) 18.19 17.20 28.05

C=O (%) 0.23 0 0.01

O−C=O (%) 1.40 1.72 0.15

C−C (%) 80.17 81.07 71.79
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